

Transitioning to the Future Grid in MA Event Series

Event 1 | Exploring strategies for an efficient grid transition

March 28, 2024

Sponsored by

CENTER

5

MASSACHUSETTS CLEAN ENERGY

Superior States Clean Energy Economy

AGENDA

Welcome

9:00 AM

Alistair Pim, VP of Innovation & Partnerships NECEC

Venue Sponsor Remarks: The Effects of Climate Change on MA

Municipal Expenditures Bo Zhao, Senior Economist, Federal Reserve Bank of Boston

Welcome Remarks

Joe Curtatone, President, NECEC

Introduction

Dr. Emily Reichert, CEO, MassCEC

Opening Remarks

Secretary Tepper, Executive Office of Energy and Environmental Affairs for the Commonwealth of Massachusetts

Presentation by Sarah Cullinan, MassCEC

GMAC reflections and proposed strategies

Break

10:30-10:45AM

Table Discussion

Closing Remarks

Sarah Cullinan

Senior Program Director, MassCEC

Transitioning to the Future Grid

A MassCEC & NECEC Event Series

Image credit: NCSL

Setting the Stage

- Future grid challenge
- Existing efforts & this event series

Setting the Conversation

- Lay the groundwork for today's table conversation
- Serve as foundation for the rest of the series

Setting the Stage

Setting the Stage: Decarbonization Goals

Figure 2: MECO Historical (actual & weather-adjusted) and Projected Peaks

* From National Grid and Eversource ESMPs

Key Features of the Future Grid

Key Features:

- Energy flows in two directions, from many generation sources, located at different places on the transmission and distribution grid
- Customers will receive and provide energy and services to the grid
- The grid hosts thousands of devices that capture and respond to data from across the grid
- A future, modern grid must consider
 Environmental Justice Communities and
 ensure an equitable energy transition
- Must balance welcoming innovation and new technology, while also guaranteeing reliability

Setting the Stage

This event series proposes one forum to help think through how to make this transition a reality.

The challenge is significant.

The future grid must:

- Meet unprecedented demand
- Achieve decarbonization goals
- Ensure reliable, affordable, equitable access.

Event Overview

The Challenge	
The grid transition	De
ahead is uncharted	le
territory. Navigating the	•
transition requires	•

- new ways of thinking
- new processes
- new relationships.

The Objective

Develop strategies that lean into

- Collaboration
- Innovation

to help make the transition to a future grid **more efficient and effective**.

Series: Content and Calendar

- Today:
 - Introduction & table-setting
- Interim Convenings:
 - To be announced
- September 26 @ The Engine:
 - Take-aways and next steps

Progress to Today

The challenge is significant.

The future grid must:

- Meet unprecedented demand
- Achieve decarbonization goals
- Ensure reliable, affordable, equitable access.

C

Progress to Today

Significant work and progress has already occurred.

 (\mathbf{r})

We're here.

Transitioning to the Future Grid: Setting the Stage

C

Electric Sector Modernization Plans (ESMPs)

The Climate Law requires that the state's EDCs prepare ESMPs to proactively upgrade the distribution system and meet multiple objectives

- Improve grid reliability, communications, and resiliency;

- Enable increased, timely adoption of renewable energy and DERs;
- Promote energy storage and electrification tech for decarbonization;
- Prepare for climate-driven impacts on T&D systems;
- Accommodate transportation, building electrification, and new loads;
- Minimize or mitigate impacts on ratepayers.

- GMAC reviews and provides recommendations to the EDCs on the ESMPs.
- It is an integral part of increasing transparency and stakeholder engagement in the grid planning process.

Who is on the GMAC?

- GMAC members, 15 voting and 2 nonvoting (electric utility representatives), represent a wide array of organizations and interests.
- Members are appointed by the Governor and serve five-year terms.
- The Commissioner of the DOER chairs the GMAC, which is supported by DOER staff.

This is Just the Beginning...

The first Future Grid planning process represents an enormous, novel body of work, and substantial progress.

But this is just the beginning...

Setting the Conversation

Today's Conversation & Event Series

E.C.

Reflections from GMAC Participation

The list of requirements is daunting.

- One interconnected system to support nearly every aspect of our lifestyles and economy
- While balancing affordability and equity
- And maintaining unwavering safety and reliability

Efficiency gains and a lean grid should be priority.

- Advance affordability
- Alleviate siting challenges
- Address grid constraints faster, flexibly

Getting from today to 2050 is complex.

- Where, when, and how much electrification and hosting capacity need will pop across the system?
- Will benefit from increased information flow

Our best model for grid planning is evolving.

- Both top down (utility) and bottom up (grid users)
- Guided by a long-term strategy
- Iterative in the medium-term
- Flexible and responsive in the short-term

Getting to the Future Grid

The only way to solve for these challenges is with new levels of collaboration and innovation.

Getting to the Future Grid

The only way to solve for these challenges is with new levels of collaboration and innovation.

Proposed Strategy: Grid Planning Reimagined

A VISION FOR GRID PLANNING

SETTING A GUIDEPOST:

Grid as an enabler, a platform

PLANNING:

Top-down *and* bottom-up

IMPLEMENTATION:

Engineered and managed by experts, reflecting the needs and input of users

- How can **information flow** seamlessly and timely from grid users to grid planners?
- What type of formal or informal processes should be developed?
- What innovative tools and regulatory structures are needed for a new approach to planning?

Getting to the Future Grid

The only way to solve for these challenges is with new levels of collaboration and innovation.

Proposed Strategy: Championing Grid Technology

C

DISTRIBUTION

How can winter ratings and distribution automation increase design capacity? Are there additional technologies or solutions needed in distribution system efficiency?

TRANSMISSION

How to integrate grid enhancing technologies (GETs) at a broad scale? Considering the Tx-Dx interface, can GETs benefit the distribution system?

VPPs & GRID FLEXIBILITY

What technologies/needs do grid operators need to operationalize VPPs?

What do stakeholders see in the future for VPPs?

What is the potential for increased grid efficiency from VPPs?

Proposed Strategies: What Else?

The only way to solve for these challenges is with new levels of collaboration and innovation.

Final Thoughts

The Challenge	
The grid transition	
ahead is uncharted .	

The Chellense

Navigating the transition **requires**

- new ways of thinking
- new processes
- new relationships.

The Objective

Develop strategies that lean into

- Collaboration
- Innovation
 to help make the
 transition to a future
 grid more efficient and
 effective.

Events: Content and Calendar

- Today:
 - Introduction & table-setting
- Interim convenings:
 - To be announced
- September 26 @ The Engine:
 - Take-aways and next steps

Discussion Questions

GRID PLANNING

- How can information flow seamlessly and timely from grid users to grid planners?
- What type of formal or informal processes should be developed?
- What innovative tools and regulatory structures are needed for a new approach to planning?

GRID TECH

- How can winter ratings and distribution automation increase design capacity?
- Are there additional technologies or solutions needed in distribution system efficiency?
- How do we GETs at a broad scale?
- How should we think about the distributiontransmission interface?
- What technologies do grid operators need to operationalize VPPs?
- What do stakeholders see in the future for VPPs?
- What is the potential for increased grid efficiency from VPPs?

